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We study collisional damping of electron zonal flows in toroidal electron temperature gradient (ETG)
turbulence due to the friction between trapped and untrapped electrons. With the assumption of
adiabatic ions, the collisional damping is shown to occur on fast time scales !0:24!1=2"e. The
comparison with the growth rate of electron zonal flows indicates that the shearing by electron zonal
flows is unlikely to be a robust mechanism for regulating ETG turbulence. This finding vitiates the
claims of several simulation studies that have ignored the effects of collisional damping of electron
zonal flows and offers a possible partial explanation of the high levels of electron thermal transport
observed in the National Spherical Torus Experiment.
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One of the greatest challenges in magnetic confinement
fusion is to understand both the origin and mechanisms
for suppression of anomalous electron heat transport [1].
In the past few decades, several candidate mechanisms for
anomalous electron heat transport, such as the trapped
electron modes (TEM) [2], the current-diffusive balloon-
ing mode [3], and the electron temperature gradient
(ETG) model [4–6], have been proposed, spanning the
entire range of relevant scales from #e to a (minor radius).
Among these, the ETG model appears to be promising,
with one of its merits being the natural separation of
$e from $i and D. However, since ETG excites fluctua-
tion energy at small scales ( ! #e) with high frequency
( ! vTe=Rq in torus and vTe=L? in slab), a naive mixing
length estimate based on #e yields $ETG

e ! $ITG
i =60 (ITG:

ion temperature gradient), which is too small to be con-
sistent with experimental observations ($e ! $i). Thus, a
successful ETG model must provide a physical mecha-
nism which significantly enhances $e over mixing length
estimate levels, possibly giving an (radial) effective trans-
port scale length significantly larger than #e. An impor-
tant issue in the determination of $e is to determine
whether formation of extended structure is possible. As
zonal flow shearing naturally inhibits formation of such
structures, we thus are intensely interested in zonal flow
damping mechanisms. Indeed, a proper understanding
and representation of such a flow damping mechanism
is essential for meaningful computer simulations of ETG
turbulence. While TEM is another strong candidate for
electron thermal transport, in this Letter, we examine the
ETG mode as one of the plausible theoretical candidates.

One mechanism for regulating structure scale in ETG
turbulence is the shearing by self-generated electron zo-
nal flows [7]. Electron zonal flows are axisymmetric
poloidal flows (k% " 0 and k& " 0) [8], generated by
modulational instability, for instance, and are the analogs
of ion zonal flows in ion temperature gradient turbulence
[9]. While the shearing by ion zonal flows is now well-
known to regulate and thus stabilize ITG turbulence, this

shearing is unlikely to affect ETG turbulence which has
very small scales ( ! #e). In comparison, electron zonal
flows have much smaller radial scales than ion zonal
flows, and thus their shearing can be potentially effective
in regulating ETG turbulence. As such, the elucidation of
the dynamics of electron zonal flows, i.e., both their
growth and damping, is critical to assess their role in
the regulation of ETG turbulence.

Electrostatic ETG has a strong resemblance to ITG
with the role of electrons and ions reversed (when the
Debye screening effect is negligible, i.e., 'De # #e). Note
that the difference between the two is that ions can be
treated as adiabatic for electron zonal flows (as #ik$ 1),
while electrons are nonadiabatic for ion zonal flows. It is
well-known that in a toroidal ITG, ion zonal flow under-
goes both collisionless and collisional damping, due to
the charge screening by both trapped and untrapped ions
and pitch angle scattering between the two [10,11]. In
view of the similarity between ITG and ETG, a similar
damping of electron zonal flows is expected to occur in
ETG due to the friction between trapped and untrapped
electrons. In fact, since (ee;(ei $ (ii, the collisional
damping of electron zonal flows is likely to be much
stronger than ion zonal flows damping.

In the present Letter, we limit ourselves to the case
where the Debye screening effect is negligible ('De #
#e) and assume adiabatic ions for electron zonal flows.
We consider an axisymmetric magnetic field B " r)%
r & Ir) and axisymmetric potential perturbation
&'x; t( " &k'x( exp)iS'x?(* with wave number k? "
S0' (r . Here, I " RB&, S0 " @ S,  is the poloidal
flux function (@r " RBp), ) is the toroidal angle vari-
able, and &k'x( is a slowly varying function of space. For
electron zonal flows, the scale of potential lies between #e
and #i, i.e., k?#e < 1< k?#i [#e " 'Te=me(1=2=j!ej and
#i " 'Ti=mi(1=2=!i are electron and ion gyroradii].

We assume &k to be constant on the flux surface,
i.e., &k " h&ki, since it survives Landau damping.
Here, angular brackets denote flux surface average
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hAi " H'dl=Bp(A=
H'dl=Bp(. Then, the quasineutrality

condition for the k zonal mode takes the following form:

n0
e
Te0

k2?#
2
e&k & hneki " + e&k

Tio
n0: (1)

Here, n0 is the background density associated with
Maxwellian distribution F0, while nek "

R

d3vfek is the
perturbed electron guiding center density with distribu-
tion function fek; the first term in Eq. (1) is the electron
polarization density.

The perturbed electron guiding center distribution
function fek satisfies the drift kinetic equation. Fol-
lowing the analysis of Ref. [8], we obtain the solution
for fek by a perturbation expansion in terms of the small
parameter !=!b (!b bounce frequency) as fek "
i'e=Te(F0Q&k & hk, where b̂b ,rhk " 0, b̂b " B=B, and
Q " I@ Svk=!e. Note that !+1 is a time scale for zonal
flows and that the geodesic acoustic mode is not consid-
ered in this Letter. hk is then determined from the solu-
bility condition obtained by averaging

@thk + 'Cehk( " +i e
Te0

F0Q@t&k & Sek: (2)

Here, Ce is the collision term due to electron-electron and
electron-ion collisions, Sek is the source term, and the
average A " H'dl=vk(A=

H'dl=vk( is taken along a closed
orbit for trapped particles and along one poloidal circum-
ference for untrapped particles.

To obtain the potential to second order in banana
width, we first compute the surface averaged radial cur-
rent hJ ,r i " +eh

R

d3vvD ,r feki " eIh
R

d3v'vk=
!e(vkb̂b ,rfeki, and then the electron density on the
flux surface hneki " +h#ki=e, via @th#ki " +@ hJ ,
r i. The quasineutrality condition then gives the poten-
tial in terms of the electric susceptibility *k as

~** k'p( ~&&'p( "
+1

p'n0e=Te0(

*
Z

d3v~SSek

+

; (3)

~** k'p( " "& 'k?#e(2

&
*

'mecIS0(2
n0e2

Z

d3v
vk
B

!
vk
B
F0 + g

"
+

: (4)

Here, " " Te=Ti, ~AA'p( "
R

dtA't(e+pt is the Laplace
transform of A, and g " +i'Te0 ~hhk=IS0mec ~&&k( is the
Laplace transform of hk up to a normalization factor,
which satisfies

g+ 1
p
Ceg "

!
vk
B

"

F0: (5)

Since we are interested in the damping of the potential,
we consider an initial value problem by assuming Sek "
fek'0(+'t(. This initial electron density perturbation is
accompanied by rapid potential adjustment due to classi-
cal polarization, in order to satisfy the quasineutrality

condition (1) on the order of electron gyroperiod
( ! 1=j!ej). If an adiabatic ion response is established
within this time, the evolution of the potential for t >
1=j!ej can be described with the initial electron density
perturbation

hnek'0(i " +n0
e
Te0

)k2?#2
e & "*&k'0(: (6)

Then, the time evolution of the potential takes the follow-
ing simple form:

&k't( " K't(&k'0(; (7)

where K't( is the normalized response kernel with
Laplace transform ~KK'p( " 'k2?#2

e & "(=p~**'p(.
Let us first consider the collisionless case. In this case,

the solution to Eq. (5) is simply given by g " 'vk=B(. By
using this, and assuming a large-aspect ratio tokamak
(! " r=R# 1) with circular cross section, we can com-
pute ~**'p( and K't( in Eqs. (4) and (7), respectively, by
doing standard integrals [12] to obtain

&'t( " "& k2?#
2
e

"& k2?#
2
e)1& 1:6q2=

###

!
p *&'0(: (8)

The second term in the square brackets comes from the
neoclassical polarization due to finite banana orbits. Note
that the ITG case is recovered by putting " " 0 and #e !
#i in Eq. (8). If 'k?#e(2 < ", the residual potential in the
ETG is larger than in the ITG case. In the opposite short
wavelength case where 'k?#e(2 > ", the residual poten-
tials for ETG and ITG become comparable.

It is interesting to note that g / vk reduces the charge
screening [see Eq. (4)]. Since g vanishes for trapped
electrons, there is a discontinuity in g at the trapped-
untrapped boundary. With collisions, g becomes a smooth
function of pitch angle ' through pitch angle scattering.
In fact, in the long time limit, the asymmetry in g (with
vk) is wiped out via pitch angle scattering, and g asymp-
totically approaches to zero value. That is, passing elec-
trons with vk > 0 get converted to those with vk < 0 by
scattering. Therefore, the overall screening due to passing
electrons is more significant in the collisional case, and
this screening is the cause of the larger damping of the
potential. In more physical terms, this is because of
the damping of current carried by passing electrons as
the asymmetry in the distribution of passing electrons in
vk decreases via pitch angle scattering.

The collisional damping of the potential may be seen
from the following two steps. The initial stage for t < !"e
consists of rapid adjustment of g through pitch angle
scattering (primarily near the trapped-untrapped bound-
ary) leading to the algebraic decay of potential [13]. Here,
"e is the microscopic collision time of electrons. This
initial algebraic damping rate depends on the initial dis-
tribution of g, becoming very rapid for a distribution of g
localized near the trapped-untrapped boundary. At later
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time t > !1=2"e, g damps exponentially, and asymptoti-
cally approaches zero. It is easy to see that the damping of
g (or hk) is directly related to the damping of poloidal
flows up as follows [13]:

up " u ,r%
jr%j " uk

Bp
B

& cB&
B2

!

@r&& B
ene

@rp
"

; (9)

where uk " '1=n0(
R

d3vvkfek. By assuming that pres-
sure gradient is negligible compared to the electric field
in Eq. (9) (as we did in obtaining the solution fek),
and then by substituting fek, one can show that up ’
'Bp=Bn0(

R

vkhk for a large-aspect ratio tokamak (B ’
B& $ Bp). Therefore, poloidal flows damp out due to
collisions, while the potential approaches a finite value.
The value of this residual potential can be computed from
Eq. (4) as

&'t( ’ "& k2?#
2
e

"& k2?#
2
ep
&'0(; (10)

where #ep " #e'B=Bp( > #e is the electron gyroradius
for poloidal magnetic field Bp. Thus, for 'k?#ep(2 < ",
&'t( does not damp significantly, while for 'k?#ep(2 > ",
&'t( ! '"=k2?#2

e('Bp=B(2&'0(. Of course, retaining resid-
ual ion finite Larmor radius effects (for k?#i > 1)
changes the condition on k2?#

2
i from k2?#

2
i $ 1 to

k2?#
2
e > 1=

#######

2,
p

k?#i [14]. For "! 1 and deuterium, this
is equivalent to k?#e > 0:2 and k?#ep > 0:2B=B%. Note
for ITG, while the zonal flow spectrum peaks at k?#i !
0:1, analogous significantly higher k? content does exist
[15]. Thus, the condition for the applicability of the long
wavelength neoclassical polarization density is margin-
ally satisfied. Also, it is interesting to note that the
simulations in [6,8,16,17] assume purely adiabatic ions,
resulting in the reduction of the ETG zonal flow growth
due to enhanced inertia.

The time scale over which this collisional damping
occurs is much shorter than that for the ITG case since
(ee;(ei $ (ii. In order to compute this damping rate, we
assume " " Ti0=Te0 " 1 and use a momentum conserv-
ing pitch angle scattering operator for the collision term,
including both electron-electron and electron-ion colli-
sions [18],

Ceg "
!
Te
E

"
3=2

$
2(e
B

################

1+ 'B
p

@'''
################

1+ 'B
p

@'g(

& (evkF0

R

d3v(evkg
R

d3v(ev2kF0

%

: (11)

Here, E " mev2=2, (e " (e)1&H'
###########

E=Te
p

(*, (e "
!(ee=m1=2

e '2Te(3=2", (ee " 4,n0e4 ln", " is the Coulomb
logarithm, H'z( " E0'z(=2z& '1+ 1=2z2(E'z(, E'z( is
the error function, and ' is the pitch angle. Note that (e
includes both electron-ion (the first term in the square
brackets) and electron-electron collisions (the second
term in the square brackets). By using (11) and following

a similar analysis as in Ref. [8], we obtain

&'t( ’ "& k2?#
2
e

"& k2?#
2
ep

$

1& "& k2?#
2
ep

k2?#
2
ep

1:4
!

exp'+t=td(
%

&'0(;

(12)

with the damping rate "d ’ 0:24!1=2"e, where "e "
3

####

,
p

=4(ee is the collision time. As expected, poloidal
flows damp exponentially fast on a time scale 1="d /
(ee, which is much shorter than that for the ITG case
(by a factor of

##############

mi=me

p

). It is important to note though
that in normalized units (1=!i and 1=j!ej for ITG and
ETG, respectively), the zonal flow damping rate in ETG
becomes comparable to that in the ITG case. Therefore, in
order to determine whether electron zonal flows can
regulate ETG turbulence, we need to compare their
damping rate with their growth rate (for instance, by
modulational instability). Because of the adiabatic ion
response (which enhances zonal flow inertia), the
growth rate of electron zonal flows f/ '#ek(4=
)"+1 & '#ek(2* ’ '#ek(4" with #ek < "+1=2g is, however,
much smaller than that of ion zonal flows [ / '#ik(2] in
the same normalized units. This result casts a rather
strong doubt on the conclusion reached in [19] regarding
the effects of electron zonal flows on ITG turbulence.

To be more quantitative, we ignore the presence of
streamers and estimate the saturation level of ETG turbu-
lence on the #e scale by balancing the growth rate of ETG
zonal flows against their collisional damping. By using
p#e ! 1 and k#e # 1 (p and k are the characteristic wave
numbers of turbulence and zonal flows) in the growth rate
of ETG zonal flow [7], we obtain

-q !
vTe
Ln

'k#e(4
1

###########################

!'.+ .c(="
p

I
IML

: (13)

Here, I "
R

d3pje ~&&=Tej2 and IML " '#e=Ln(2 is the mix-
ing length estimate. By balancing Eq. (13) against -d !
(ee=!1=2, we find that

I
IML

! (-
"1=2

'.+ .c(1=2
'k#e(4

: (14)

Here, (- " (eeLn=vTe is the normalized collisionality.
Thus, the key parameters in setting the turbulence inten-
sity level are the characteristic scale of zonal flows,
deviation from the marginality, and collisionality. The
scaling of I ! 'k#e(+4 in Eq. (14) suggests a large satu-
ration level, on the order of 100IML, assuming typical core
tokamak parameters and 'k#e( ! 1=10. Of course, retain-
ing the residual nonadiabatic ion response, as discussed
above, will weaken the dependence of I=IML on k#e and
constrain k#e > 0:2 for " " 1. Even with this caveat, the
predicted saturation level, which is rather large, high-
lights the inefficiency of zonal flow shearing in saturating
ETG turbulence and suggests that another saturation
mechanism must be operating.
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It is instructive to consider the implication of colli-
sional damping in the context of ‘‘pattern selection’’;
namely, what determines if zonal flows or streamers are
formed? This question is particularly important as it is
argued that it is the occurrence of large amplitude
streamers which allows ETG to drive experimentally
relevant transport. Thus, determining the parameter
space for streamer formation is key to understanding
ETG-driven transport. Simulations in [6,16] indicate
that linear streamers are more likely to form for positive
shear and lower /, while weak/negative shear and/or
large / are expected to give lower transport and satura-
tion levels. The latter regime supports enhanced zonal
flow formation, similar to sheared slab simulations. Note
that with collisions included, the regime of ETG zonal
flow relevance is likely to be narrowed in [6] as the zonal
flow damping would enhance the thermal transport [20]
and the formation of streamers. Zonal flow formation in
slab geometry with a negative shear has also been ob-
served in [8,17]. Weak or negative shear and large /
correspond to the case of internal transport barrier re-
gions of advanced tokamak operating regimes, where
anomalous electron heat transport is sometimes observed
even if ion thermal transport and particle transport are
suppressed. These observations are seemingly inconsis-
tent with the aforementioned simulation results. However,
noting that these simulations were performed without
collisions, these conflicting results may be reconciled by
the incorporation of collisional damping of ETG zonal
flows described in this Letter. Note also that in a 2D slab
geometry, there is no equivalent damping of electron
zonal flows due to the absence of trapped electrons.
Thus, the dynamics of zonal flows and ETG turbulence,
and thus pattern selection, is quite sensitive to the geome-
try of the problem. It should also be noted that a recent
gyrofluid simulation of ETG turbulence [21] found the
result that streamers were only slightly anisotropic in the
turbulent state, so that heat transport was only weakly
enhanced over the (rather insignificant) mixing length
level (i.e., $e ! 2$e;ML). In this simulation, zonal flows
were artificially suppressed by the imposition of an un-
realistically large damping. As discussed above, an accu-
rate zonal flow damping decrement implies (when
balanced against production) modest levels of electron
flow E%B shear which, however, are not necessarily
negligible. Thus, results of [21] may be viewed as an
upper bound on the true fluctuation levels. Some caution
should, however, be taken in interpreting the former
results since they are based on very long wavelength
modes with 'k?#e(2 ’ 10+4. Further experimental stud-
ies quantifying the dependence of $e on magnetic shear
and / would also be very helpful.

An interesting direct application of these results is the
question of the high level of heat transport observed in
neutral beam heated National Spherical Torus Ex-
periment (NSTX) plasmas [22]. While the flow damping

calculation presented here is limited formally to the
regime of large-aspect ratio, it is certainly reasonable
to expect the flow damping to increase for smaller aspect
ratios, such as those found in a spherical torus. Thus, ETG
zonal flows are likely to be heavily damped in NSTX,
thereby removing an important self-regulation mecha-
nism for the turbulence, and naturally implying higher
levels of electron heat transport. Further investigation of
this suggestion requires a more general form of the neo-
classical density [23] to extend the ETG zonal flow damp-
ing theory to regimes of low aspect ratio, and of course,
quantitative comparisons with experiment. Finally, we
remark that due to the neglect of finite alpha and mag-
netic shear effects, our results cannot be directly applied
to electron transport in internal transport barrier
plasmas.
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